# Palouse River Addendum Implementation Plan for Agriculture (17060108)



Photo taken from Palouse River Subbasin TMDL Five-Year Reveiw (IDEQ, 2015a)

Prepared by the Idaho Soil and Water Conservation Commission In cooperation with the Latah Soil and Water Conservation District

#### July 2016

#### Original Plans:

Cow Creek WAG (Cow Creek Watershed Advisory Group). 2008. Cow Creek Watershed Total Maximum Daily Load Implementation Plan for Agriculture. Genesee, ID: Idaho Soil and Water Conservation Commission.

Palouse River Tributaries WAG (Palouse River Tributaries Watershed Advisory Group). 2009. Palouse River Tributaries Total Maximum Daily Load Implementation Plan for Agriculture. Potlatch, ID: Idaho Soil and Water Conservation Commission.

Paradise Creek WAG (Paradise Creek Watershed Advisory Group). 1999. Paradise Creek Total Maximum Daily Load Implementation Plan. Moscow, ID: Latah Soil and Water Conservation District.

South Fork Palouse River WAG (South Fork Palouse River Watershed Advisory Group). 2009. South Fork of the Palouse River Total Maximum Daily Load Implementation Plan for Agriculture. Moscow, ID: Idaho Soil and Water Conservation Commission.

# **Table of Contents**

| Introduction                          | 4  |
|---------------------------------------|----|
| Project Setting                       | 4  |
| Land Use and Land Ownership           | 5  |
| Accomplishments                       | 5  |
| Resource Concerns                     | 10 |
| Sediment                              | 13 |
| Bacteria                              | 17 |
| Nutrients                             | 20 |
| Temperature                           | 21 |
| Agricultural Inventory and Evaluation | 23 |
| Treatment                             | 23 |
| Funding                               | 28 |
| Maintenance, Monitoring, Evaluation   | 30 |
| References                            |    |

# List of Tables and Figures:

| Figure 1. Palouse River Subbasin and Location (Latah Soil and Water Conservation District)        | 5  |
|---------------------------------------------------------------------------------------------------|----|
| Table 1. BMP Practices installed with NRCS funds FY 2003 thru FY 2015 in the Palouse River        |    |
| Tributaries.                                                                                      | 6  |
| Table 2. BMP Practices installed with NRCS funds FY 2004 thru FY 2015 in the South Fork of the    |    |
| Palouse River.                                                                                    | 7  |
| Table 3. BMP Practices installed with NRCS funds FY 2004 thru FY 2015 in Paradise Creek           | 8  |
| Table 4. BMP Practices installed with NRCS funds FY 2008 thru FY 2013 in Cow Creek                | 8  |
| Table 5: BMP Accomplishments 1995-2016                                                            |    |
| Table 6. Summary of recommended changes for AUs based on 5-year review and addendums (II          |    |
| 2015a, c)                                                                                         |    |
| Table 7. Assessment units with sediment TMDL's (IDEQ, 2015a).                                     |    |
| Table 8. Daily TSS load for Lower Gold Creek (ID17060108CL029_03) (monitoring point PR9) (IDE     |    |
| 2015a).                                                                                           |    |
| Table 9. Daily TSS load for Lower Hatter Creek (ID17060108CL015b_03) (monitoring point PR12)      |    |
| 2015a).                                                                                           |    |
| Table 10. Daily TSS load for Lower Rock Creek (ID17060108CL012_03) (monitoring point PR14) (I     |    |
| 2015a).                                                                                           |    |
| Table 11. Daily TSS load for Upper Rock Creek (ID17060108CL013a_02) (monitoring point PR15)       |    |
| 2015a).                                                                                           | •  |
| Table 12. Daily TSS load for Lower Flannigan Creek (ID17060108CL011b_03) (monitoring point P      |    |
| (IDEQ, 2015a)                                                                                     | •  |
| Table 13. Assessment units with <i>E. coli</i> bacteria TMDL's (IDEQ, 2015a)                      |    |
| Table 14. E. coli bacteria reductions needed for the South Fork of Palouse and Palouse Tributario |    |
| (IDEQ, 2015a).                                                                                    |    |
| Table 15. E. coli bacteria concentrations and necessary load reductions in Paradise Creek (IDEQ,  |    |
| 2015c).                                                                                           |    |
| Table 16. Assessment units with nutrient TMDL's (IDEQ, 2015a).                                    |    |
| Table 17. Average total phosphorus nonpoint source load allocations (IDEQ, 2015a).                |    |
| Table 18. Average lack of shade for Lower Cow Creek AU (ISWC, 2014).                              |    |
|                                                                                                   |    |
| Table 19. Total solar loads and average lack of shade for Paradise Creek, Palouse River Tributari |    |
| South Fork Palouse River (IDEQ, 2016)                                                             |    |
| Table 20: Potential BMP Practices by watershed                                                    | 23 |

#### Introduction

The purpose of this plan is to address the TMDL addendums and the 5-Year Review for the Palouse River Subbasin with the goal to help restore designated beneficial uses. Only the Idaho portion of the Palouse Subbasin is addressed in this implementation plan.

"Pursuant to section 39-3601 et seq., Idaho Code, and IDAPA 58.01.02, Water Quality Standards, the Idaho Soil & Water Conservation Commission (SWCC) is the designated agency for management of nonpoint source pollution on grazing and agricultural land in Idaho and is therefore responsible to lead TMDL implementation activities on grazing and agricultural land in the State."

The objective of the plan is to outline a process of potential site-specific agricultural best management practices (BMP's) that can be used to help restore the designated beneficial uses by reducing pollutant loads in the Palouse River subbasin.

## **Project Setting**

The Palouse River subbasin (HUC 17060108) is located in northern Idaho near the City of Moscow covering 260,641 acres (407 square miles). The headwaters of the Palouse River originate in the Hoodoo Mountains of the St. Joe National Forest. The Palouse River (Figure 1) and most of its tributaries originate in forested mountain terrain and flow to the lower gradient rolling hills of the Palouse, which is dominated by agriculture. The Idaho portion of the Palouse River Subbasin is approximately 232,500 acres, located primarily in Latah County. (IDEQ, 2005a). The Palouse River subbasin is a sparsely populated area with one major town, Moscow, and several other small towns and communities, including Potlatch, Princeton, and Harvard (IDEQ, 2015a)

The economy of the Palouse is dominated by agriculture and two universities: the University of Idaho and Washington State University. Forestry, livestock, grazing, construction, and recreation are other economic factors. All of these affect water quality to some degree. The Palouse prairie is one of the most productive agricultural areas in the world and agriculture is and will continue to be the dominant economic driving force in the subbasin (IDEQ, 2015a). The Palouse River Subbasin TMDL 5-Year Review (IDEQ, 2015a) summarizes the project setting in more detail.

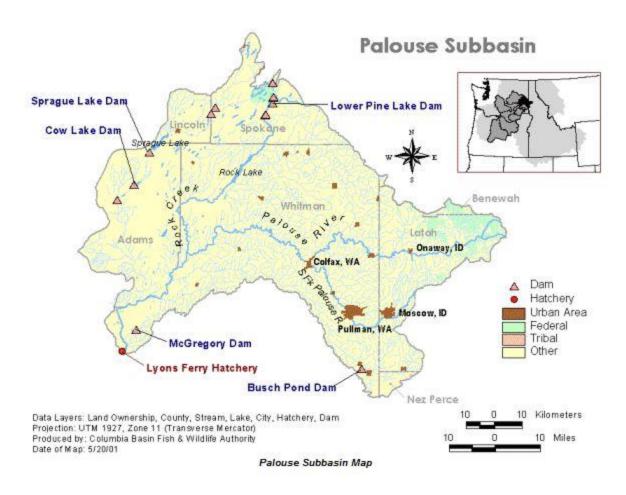



Figure 1. Palouse River Subbasin and Location (Latah Soil and Water Conservation District).

## Land Use and Land Ownership

Land use in the Palouse River watershed is primarily dryland agriculture, followed closely be forestry. The majority of the watershed is privately owned (89%). Nearly all (94%) of the subbasin is located in Latah County. For a detailed description of land use, please refer to the original TMDL Implementation Plans (as reference on the front page).

## **Accomplishments**

The "Palouse River Subbasin 5-Year Review" summarizes the implementation work that was done in the Palouse River Subbasin between 1998 and 2014. Table 1, 2, 3, and 4 summarize the practices installed using NRCS federal funds in the sub-watersheds. Table 5 highlights all the accomplishments.

Table 1. BMP Practices installed with NRCS funds FY 2003 thru FY 2015 in the Palouse River Tributaries.

| Practice Name                                             | Amount Installed | Units       |
|-----------------------------------------------------------|------------------|-------------|
| Access Control                                            | 6,922.90         | acres       |
| Access Road                                               | 123.00           | feet        |
| Conservation Cover                                        | 12,043.80        | acres       |
| Conservation Crop Rotation                                | 10,466.50        | acres       |
| Contour Farming                                           | 7,105.50         | acres       |
| Cover Crop                                                | 52.70            | acres       |
| Critical Area Planting                                    | 3.10             | acres       |
| Enhancement - Energy Management                           | 1,051.20         | acres       |
| Enhancement - Grazing Management                          | 190.40           | acres       |
| Enhancement - Habitat Management                          | 400.00           | acres       |
| Enhancement - Nutrient Management                         | 531.20           | acres       |
| Enhancement - Pest Management                             | 1,576.80         | acres       |
| Enhancement - Soil Management                             | 525.60           | acres       |
| Fence                                                     | 16,087.00        | feet        |
| Field Border                                              | 6,123.00         | acres       |
| Filter Strip                                              | 54.30            | acres       |
| Firebreak                                                 | 242,994.10       | feet        |
| Forage and Biomass Planting                               | 12.00            | acres       |
| Forage Harvest Management                                 | 142.50           | acres       |
| Forest Stand Improvement                                  | 3.50             | acres       |
| Grade Stabilization Structure                             | 5.00             | structures  |
| Heavy Use Area Protection                                 | 2.30             | square feet |
| Integrated Pest Management (IPM)                          | 20,890.30        | acres       |
| Livestock Pipeline                                        | 3,810.00         | feet        |
| Nutrient Management                                       | 15,833.20        | acres       |
| Prescribed Grazing                                        | 501.20           | acres       |
| Range Planting                                            | 43.50            | acres       |
| Residue and Tillage Management, No-Till                   | 6,857.70         | acres       |
| Residue and Tillage Management, Reduced Till              | 11,371.20        | acres       |
| Residue Management -Direct Seed                           | 37,634.60        | acres       |
| Residue Management, Mulch Till                            | 2,042.20         | acres       |
| Residue Management, No-Till/Strip Till                    | 3,145.80         | acres       |
| Restoration and Management of Rare and Declining Habitats | 24.60            | acres       |
| Riparian Forest Buffer                                    | 2.50             | acres       |
| Riparian Herbaceous Cover                                 | 37.10            | acres       |
| Spring Development                                        | 1.00             | spring      |
| Stream Crossing                                           | 2.00             | crossings   |
| Streambank and Shoreline Protection                       | 13,142.00        | feet        |
| Structure for Water Control                               | 1.00             | structure   |
| Tree/Shrub Establishment                                  | 88.60            | acres       |

| Underground Outlet                  | 1,024.00 | feet    |
|-------------------------------------|----------|---------|
| Upland Wildlife Habitat Management  | 9,587.30 | acres   |
| Watering Facility                   | 8.00     | troughs |
| Wetland Enhancement                 | 11.70    | acres   |
| Wetland Restoration                 | 29.40    | acres   |
| Wetland Wildlife Habitat Management | 603.50   | acres   |
| Wildlife Watering Facility          | 3.00     | troughs |

Table 2. BMP Practices installed with NRCS funds FY 2004 thru FY 2015 in the South Fork of the Palouse River.

| Practice Name                                             | Amount Installed | Units    |
|-----------------------------------------------------------|------------------|----------|
| Access Control                                            | 1,667.60         | acres    |
| Agricultural Secondary Containment Facility               | 1.00             | facility |
| Brush Management                                          | 13.70            | acres    |
| Conservation Cover                                        | 4,502.70         | acres    |
| Conservation Crop Rotation                                | 349.80           | acres    |
| Contour Farming                                           | 106.70           | acres    |
| Filter Strip                                              | 3.90             | acres    |
| Firebreak                                                 | 69,132.00        | feet     |
| Forage Harvest Management                                 | 26.20            | acres    |
| Forest Stand Improvement                                  | 7.20             | acres    |
| Grade Stabilization Structure                             | 1.00             | basin    |
| Herbaceous Weed Control                                   | 13.70            | acres    |
| Integrated Pest Management (IPM)                          | 2,426.80         | acres    |
| Nutrient Management                                       | 2,245.50         | acres    |
| Prescribed Grazing                                        | 62.50            | acres    |
| Range Planting                                            | 1.00             | acres    |
| Residue and Tillage Management, Reduced Till              | 1,959.20         | acres    |
| Restoration and Management of Rare and Declining Habitats | 18.10            | acres    |
| Tree/Shrub Establishment                                  | 88.30            | acres    |
| Tree/Shrub Pruning                                        | 8.50             | acres    |
| Underground Outlet                                        | 1,404.00         | feet     |
| Upland Wildlife Habitat Management                        | 3,116.40         | acres    |
| Water and Sediment Control Basin                          | 2.00             | basins   |
| Wildlife Watering Facility                                | 1.00             | trough   |
| Woody Residue Treatment                                   | 11.50            | acres    |

Table 3. BMP Practices installed with NRCS funds FY 2004 thru FY 2015 in Paradise Creek.

| Practice Name                                             | Amount Installed | Units       |
|-----------------------------------------------------------|------------------|-------------|
| Access Control                                            | 787.90           | acres       |
| Comprehensive Nutrient Management Plan                    | 1.00             | plan        |
| Conservation Cover                                        | 2529.40          | acres       |
| Conservation Crop Rotation                                | 3812.90          | acres       |
| Contour Farming                                           | 3177.40          | acres       |
| Cover Crop                                                | 2.00             | acres       |
| Filter Strip                                              | 15.90            | acres       |
| Firebreak                                                 | 22500.00         | feet        |
| Forage and Biomass Planting                               | 89.50            | acres       |
| Forest Stand Improvement                                  | 4.00             | acres       |
| Grassed Waterway                                          | 14.00            | acres       |
| Integrated Pest Management (IPM)                          | 749.20           | acres       |
| Irrigation Reservoir                                      | 1.00             | acre-foot   |
| Nutrient Management                                       | 650.10           | acres       |
| Prescribed Burning                                        | 3.20             | acres       |
| Residue Management, No-Till/Direct Seed                   | 1148.60          | acres       |
| Restoration and Management of Rare and Declining Habitats | 4.00             | acres       |
| Seasonal High Tunnel System for Crops                     | 1536.00          | square feet |
| Stream Crossing                                           | 1.00             | crossing    |
| Stripcropping, Field                                      | 746.00           | acres       |
| Tree/Shrub Establishment                                  | 139.30           | acres       |
| Upland Wildlife Habitat Management                        | 2608.00          | acres       |
| Water and Sediment Control Basin                          | 1.00             | basin       |
| Wetland Wildlife Habitat Management                       | 15.00            | acres       |
| Wildlife Watering Facility                                | 5                | troughs     |
| Woody Residue Treatment                                   | 4                | acres       |

Table 4. BMP Practices installed with NRCS funds FY 2008 thru FY 2013 in Cow Creek.

| <u>Practice</u>                        | Amount Applied | <u>Unit</u> |
|----------------------------------------|----------------|-------------|
| Access Control                         | 5,521.2        | acres       |
| Access Road                            | 123.0          | feet        |
| Comprehensive Nutrient Management Plan | 1.0            | each        |
| Conservation Cover                     | 8,812.0        | acres       |
| Conservation Crop Rotation             | 7,131.9        | acres       |
| Contour Farming                        | 5,287.2        | acres       |
| Critical Area Planting                 | 3.0            | acres       |
| Fence                                  | 23,995.0       | feet        |
| Field Border                           | 6,123.0        | feet        |
| Filter Strip                           | 42.6           | acres       |
| Firebreak                              | 318,356.0      | feet        |

| <u>Practice</u>                                        | Amount Applied | <u>Unit</u> |
|--------------------------------------------------------|----------------|-------------|
| Forage and Biomass Planting                            | 12.0           | acres       |
| Forage Harvest Management                              | 168.7          | acres       |
| Forest Stand Improvement                               | 8.2            | acres       |
| Grade Stabilization Structure                          | 2.0            | each        |
| Heavy Use Area Protection                              | 2.2            | acres       |
| Integrated Pest Management                             | 11,377.5       | acres       |
| Nutrient Management                                    | 6,624.8        | acres       |
| Pipeline                                               | 4,336.0        | feet        |
| Prescribed Burning                                     | 52.4           | acres       |
| Prescribed Grazing                                     | 295.5          | acres       |
| Range Planting                                         | 22.5           | acres       |
| Residue/Tillage Mgt - Mulch Till                       | 5,718.0        | acres       |
| Residue/Tillage Mgt - No Till, Strip Till, Direct Seed | 5,205.4        | acres       |
| Restoration of Rare/Declining Habitats                 | 25.6           | acres       |
| Riparian Forest Buffer                                 | 2.5            | acres       |
| Riparian Herbaceous Cover                              | 37.1           | acres       |
| Stream Crossing                                        | 1.0            | each        |
| Stream Habitat Improvement and Mgt                     | 148.2          | acres       |
| Streambank and Shoreline Protection                    | 11,800.0       | feet        |
| Structure for Water Control                            | 1.0            | each        |
| Tree/Shrub Establishment                               | 90.7           | acres       |
| Tree/Shrub Site Preparation                            | 51.2           | acres       |
| Upland Wildlife Habitat Mgt                            | 8,907.6        | acres       |
| Water and Sediment Control Basin                       | 1.0            | each        |
| Watering Facility                                      | 9.0            | each        |
| Wetland Enhancement                                    | 11.7           | acres       |
| Wetland Restoration                                    | 29.4           | acres       |
| Wetland Wildlife Habitat Mgt                           | 169.1          | acres       |
| Wildlife Watering Facility                             | 3.0            | each        |
| Woody Residue Treatment                                | 2.5            | acres       |

Table 5: BMP Accomplishments 1995-2016

| Watershed Description of Work |                                                                                                                                                                                                            | Project Lead          | Years<br>Completed |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|--|
| Paradise Creek                | Flood plain work, floodwater detention capacity increased                                                                                                                                                  | University of Idaho   | 1999-2000          |  |
| Paradise Creek                | reconstructed channel (2,100 ft.), riparian vegetation planted                                                                                                                                             | University of Idaho   | 2010               |  |
| Paradise Creek                | WWTP upgrades                                                                                                                                                                                              | City Moscow<br>WWTP   | 1996-2010          |  |
| Paradise Creek                | Moscow WWT (130,680 sqft wetland, 1,300 feet streambank restoration)                                                                                                                                       | LSWCD/Mosco<br>w WWTP | 1996-2003          |  |
| Paradise Creek                | 42,691 linear feet streambank restoration (includes 2,455,737 sq. ft. floodplain, 2,666,983 sq. ft. vegetated buffer)                                                                                      | PCEI                  | 2000-2004          |  |
| Paradise Creek                | 54,211 herbaceous and woody plants planted                                                                                                                                                                 | PCEI                  | 2000-2004          |  |
| Paradise Creek                | 139,702 sq. ft. wetlands created                                                                                                                                                                           | PCEI                  | 2000-2004          |  |
| Paradise Creek                | 2,541 ft. fence                                                                                                                                                                                            | PCEI                  | 2000-2004          |  |
| Paradise Creek                | Carol Ryrie Brink Nature Park (5-ac floodplain, 1,200 ft. stream channel remeandered, 3 - 175 ft. revetments for stabilization, 3,000 ft. streambank seeded, 6,000' geotextile, 750 native plants planted) | LSWCD/PCEI            | 1995-1996          |  |
| Paradise Creek                | Sweet Avenue Project (11,553 sqft bank restoration along 1,750' of creek)                                                                                                                                  | LSWCD/PCEI            | 1998               |  |
| Paradise Creek                | Chipman Trail (2,000 native trees and shrubs planted, 2,100 feet of stream bank restoration)                                                                                                               | LSWCD/PCEI            | 1999-2000          |  |
| Paradise Creek                | East Mountain View (1,720' streambank restoration, 2 wetlands)                                                                                                                                             | LSWCD/PCEI            | 2002-2003          |  |
| Paradise Creek                | Mountain View Park (1,100 tree and shrub plantings, 2,140' streambank restoration)                                                                                                                         | LSWCD/PCEI            | 1999-2000          |  |
| Paradise Creek                | Fire Station Streambank (190') Stabilization and Riparian planitngs                                                                                                                                        | LSWCD/PCEI            | 2002               |  |
| Paradise Creek                | Fosberg Riparian Planting Project (1,370' bank restoration, 1,370' exclusionary fencing)                                                                                                                   | LSWCD/PCEI            | 2000               |  |
| Paradise Creek                | Good Samaritian Village Riparian Planting (171' bank stabilization)                                                                                                                                        | LSWCD/PCEI            | 2002               |  |
| Paradise Creek                | Guy Wicks Field (1,136' strean bank restoration)                                                                                                                                                           | LSWCD/PCEI            | 2002               |  |
| Paradise Creek                | Leffingwell-Reid Wetland Constuction (650' bank restoration, 8,420 sqft of wetlands in three areas)                                                                                                        | LSWCD/PCEI            | 2003               |  |
| Paradise Creek                | Lefors Wetland (972' streambank restoration, 486' fence, 6,211 sq ft of wetlands in two areas)                                                                                                             | LSWCD/PCEI            | 2002               |  |
| Paradise Creek                | Lightfield Streambank Stabiilization (200') and Riparian Planting                                                                                                                                          | LSWCD/PCEI            | 2003               |  |
| Paradise Creek                | Meadow Street Project (365 ft. streambank stabilized)                                                                                                                                                      | LSWCD/PCEI            | 2000               |  |

| Paradise Creek          | Nichols Project (60 ft. streambank stabilization)                                                                                                              | LSWCD/PCEI | 2000      |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| Paradise Creek          | Orchard Wetland (14,019 sqft wetland, 146' of streambank plantings)                                                                                            | LSWCD      | 2001-2002 |
| Paradise Creek          | Renaissance Charter School (379' streambank restoration)                                                                                                       | LSWCD/PCEI | 2002      |
| Paradise Creek          | Berman Creekside Park (150 ft. streambank stabilization with 413 tree revetments and plantings)                                                                | LSWCD/PCEI | 2001-2002 |
| Paradise Creek          | State Line Project (1,020 ft. stream stabilized and planted)                                                                                                   | LSWCD/PCEI | 2001      |
| Paradise Creek          | Bridge Street Park and West Bridge Street Bank<br>Stabilization (450 ft. stream reconfigured, 100 ft.<br>stream stabilization)                                 | LSWCD/PCEI | 2001-2002 |
| Paradise Creek          | Bennett Creek (remove debris, reslope bank, 1200 native plantings)                                                                                             | LSWCD/PCEI | 2008-2010 |
| Paradise Creek          | Streets Project (2 wetlands, 732' streambank restoration)                                                                                                      | LSWCD      | 2002-2003 |
| Paradise Creek          | Styner Riparian Project (448' streambank restoration)                                                                                                          | LSWCD/PCEI | 2002      |
| Paradise Creek          | White Avenue (358' streambank restoration)                                                                                                                     | LSWCD/PCEI | 2002-2003 |
| Paradise Creek          | Paradise Creek Rural Riparian Restoration (2,500' ripparian plantings, 6 wetlands, 2 animal crossings, 740' gully restoration, 14,938' streambank restoration) | LSWCD/PCEI | 2002-2003 |
| Paradise Creek          | Private Landowner BMP installations (see Table 3 in Palouse Imp Plan)                                                                                          | NRCS       | 2004-2015 |
| Crane Creek             | Road rocking (8610 feet), Hydroseeding (521,000 sqft)                                                                                                          | LSWCD      | 2008-2011 |
| Deep Creek              | Deep Creek Stabilization (2,782 linear ft. streambank stabilized)                                                                                              | PCEI/LSWCD | 2009-2011 |
| Deep Creek              | Deep Creek Restoration (22,500 sq. ft. variable riparian buffer, 1070 ft stabilization and plantings, 2 wetlands created)                                      | PCEI       | 2006-2009 |
| Deep Creek              | Cattle exclusion, offsite water facility, feed bunks                                                                                                           | LSWCD      | 2009-2011 |
| East Fork Deep<br>Creek | Hydroseeding (11,250 sqft) along roadbank                                                                                                                      | LSWCD      | 2008-2010 |
| Flannigan Creek         | Flannigan Creek Restoration (1,336 ft. stabilization, 330,280 sq. ft. variable riparian buffer)                                                                | PCEI       | 2007-2010 |
| Long Creek              | 1200' of road rocking                                                                                                                                          | LSWCD      | 2009-2011 |
| Missouri Flat<br>Creek  | Hydroseeding (160,875 sqft) along roadcut                                                                                                                      | LSWCD      | 2009-2011 |
| West Fork Rock<br>Creek | 5900' of road rocking                                                                                                                                          | LSWCD      | 2009-2011 |
| Palouse River<br>Tribs  | Private Landowner BMP installations (see Table 1 in Palouse Imp. Plan)                                                                                         | NRCS       | 2003-2015 |

| Palouse River<br>Tribs | Direct seed (318.2 acres), Erosion Control structures (3)                                                                                 | LSWCD             | 2009-2011 |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| South Fork<br>Palouse  | Fountain Project (1,670 ft. stabilization, 68,572 sq. ft. variable riparian buffer)                                                       | PCEI              | 2009-2013 |
| South Fork<br>Palouse  | Palouse River Drive (floodplain developed, stabilization, 5 riparian wetlands, plantings for riparian forest buffer)                      | PCEI              | 2000-2004 |
| South Fork<br>Palouse  | Robinson Park (517,957 sq ft streambank restored, 9 wetlands created, fencing, hardented crossing)                                        | PCEI              | 2000-2004 |
| South Fork<br>Palouse  | Private Landowner BMP installations (see Table 2 in Palouse Imp. Plan)                                                                    | NRCS              | 2004-2015 |
| Cow Creek              | Cow Creek Water quality Improvement (erosion & sediment reduction structures (4), Conservation tillage (3,750 acres), riparian plantings) | LSWCD /<br>NPSWCD | 2004-2007 |
| Cow Creek              | Hwy 95 improvement (10 ac floodplain wetlands created)                                                                                    | ITD               | 2007      |
| Cow Creek              | Private Landowner BMP installations (see Table 4 in Palouse Imp. Plan)                                                                    | NRCS              | 2008-2013 |

#### **Resource Concerns**

According to the 5-year review the Palouse River subbasin existing pollutant loads are in general improving. Table 6 summarizes the changes recommended for the assessment units (AU's) based on the 5-year review and the addendums TMDL plans from 2015. There are not any significant water quality improvements, with beneficial uses not being supported (Table 24 in the 5-year review has detailed data on the beneficial use assessments).

Table 6. Summary of recommended changes for AUs based on 5-year review and addendums (IDEQ, 2015a, c)

| Assessment Unit Name                                                    | Assessment Unit<br>Number | Pollutant                      | Recommended Changes to Next Integrated Report         | Justification                                                           |
|-------------------------------------------------------------------------|---------------------------|--------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------|
| South Fork Palouse<br>River—Gnat Creek to<br>Idaho/Washington<br>border | ID17060108CL002_03        | Bacteria<br>( <i>E. coli</i> ) | Move from Category 4a to 2 for contact recreation use | Data show<br>126 cfu/100 mL<br>geometric mean criteria<br>is being met. |
| South Fork Palouse<br>River—source to<br>Gnat Creek;<br>tributaries     | ID17060108CL003_02        | Bacteria<br>( <i>E. coli</i> ) | Move from Category 4a to 2 for contact recreation use | Data show<br>126 cfu/100 mL<br>geometric mean criteria<br>is being met. |
| South Fork Palouse<br>River—source to<br>Gnat Creek                     | ID17060108CL003_03        | Bacteria<br>( <i>E. coli</i> ) | Move from Category 4a to 2 for contact recreation use | Data show<br>126 cfu/100 mL<br>geometric mean criteria<br>is being met. |

| Assessment Unit<br>Name                                            | Assessment Unit<br>Number | Pollutant                      | Recommended Changes to Next Integrated Report               | Justification                                                                                                                                   |
|--------------------------------------------------------------------|---------------------------|--------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Paradise Creek—<br>urban boundary to<br>Idaho/Washington<br>border | ID17060108CL005_02        | Ammonia                        | Keep in Category 4a;<br>remove ammonia as an<br>impairment  | City of Moscow WWTP is meeting their permit effluent limits for ammonia.                                                                        |
| Paradise Creek—<br>forest habitat<br>boundary to urban<br>boundary | ID17060108CL005_02a       | Ammonia                        | Keep in Category 4a;<br>remove ammonia as an<br>impairment  | Listed in error                                                                                                                                 |
| Paradise Creek—<br>urban boundary to<br>Idaho/Washington<br>border | ID17060108CL005_02        | Bacteria<br>(E. coli)          | No changes, currently in Category 4a                        | Update from fecal coliform to <i>E. coli</i> standard                                                                                           |
| Paradise Creek—<br>forest habitat<br>boundary to urban<br>boundary | ID17060108CL005_02a       | Bacteria<br>(E. coli)          | No changes, currently in Category 4a                        | Update from fecal coliform to <i>E. coli</i> standard                                                                                           |
| Idlers Rest Creek—<br>source to forest<br>habitat boundary         | ID17060108CL005_02b       | Ammonia                        | Keep in Category 4a;<br>remove ammonia as an<br>impairment  | Listed in error                                                                                                                                 |
| Gold Creek—source<br>to T42N, R04W, Sec.<br>28                     | ID17060108CL030_02        | Sediment<br>(TSS)              | Keep in Category 4a,<br>remove sediment as an<br>impairment | BURP data score of 3, indicating aquatic life beneficial uses are fully supporting; sediment data show no exceedance of the sediment surrogate. |
| Deep Creek—source to T42, R05, Sec. 02                             | ID17060108CL032a_02       | Bacteria<br>( <i>E. coli</i> ) | Move from Category 4a to 2 for contact recreation use       | Data show<br>126 cfu/100 mL<br>geometric mean criteria<br>is being met.                                                                         |
| Deep Creek—source to T42, R05, Sec. 02                             | ID17060108CL032a_03       | Bacteria<br>( <i>E. coli</i> ) | Move from Category 4a to 2 for contact recreation uses      | Data show<br>126 cfu/100 mL<br>geometric mean criteria<br>is being met.                                                                         |
| Deep Creek—T42,<br>R05, Sec. 02 to<br>mouth                        | ID17060108CL032b_02       | Bacteria<br>( <i>E. coli</i> ) | Move from Category 4a to 2 for contact recreation use       | Data show 126 cfu/100 L geometric mean criteria is being met.                                                                                   |
| Deep Creek—T42,<br>R05, Sec. 02 to<br>mouth                        | ID17060108CL032b_03       | Bacteria<br>( <i>E. coli</i> ) | Move from Category 4a to 2 for contact recreation use       | Data show<br>126 cfu/100 mL<br>geometric mean criteria<br>is being met.                                                                         |

## **Sediment**

Table 7 details the assessment units (AU's) with sediment TMDL's. There is not a numeric criterion in the Idaho water quality standards (IDAPA 58.01.02.200.08) for sediment. For each AU with sediment concerns a numeric target using total suspended solids (TSS) was set by the original WAG. These numeric targets are displayed in Table 7.

Table 7. Assessment units with sediment TMDL's (IDEQ, 2015a).

| Assessment Unit Name                                                           | Assessment Unit<br>Number | TSS Numeric Target                                            | Critical Period |
|--------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------|-----------------|
| South Fork Palouse River—Gnat Creek to Idaho/Washington border <sup>a</sup>    | ID17060108CL002_03        | 50 mg/L/30 day avg; no<br>greater than 80 mg/L daily          | February–April  |
| South Fork Palouse River—<br>source to Gnat Creek;<br>tributaries <sup>a</sup> | ID17060108CL003_02        | 25 mg/L/30 day avg; no<br>greater than 50 mg/L daily          | February–April  |
| South Fork Palouse River—<br>source to Gnat Creek <sup>a</sup>                 | ID17060108CL003_03        | 25 mg/L/30 day avg; no greater than 50 mg/L daily             | February–April  |
| Paradise Creek—urban<br>boundary to Idaho/Washington<br>border <sup>b</sup>    | ID17060108CL005_02        | 100 mg/L instantaneous;<br>50 mg/L for 10 consecutive<br>days | Year-round      |
| Paradise Creek—forest habitat<br>boundary to urban boundary <sup>b</sup>       | ID17060108CL005_02a       | 100 mg/L instantaneous;<br>50 mg/L for 10 consecutive<br>days | Year-round      |
| Idlers Rest Creek—source to forest habitat boundary <sup>b</sup>               | ID17060108CL005_02b       | 100 mg/L instantaneous;<br>50 mg/L for 10 consecutive<br>days | Year-round      |
| Flannigan Creek—source to<br>T41N, R05W, Sec. 23 <sup>c</sup>                  | ID17060108CL011a_02       | 25.91 mg/L for<br>10 consecutive days                         | January–May     |
| Flannigan Creek—source to<br>T41N, R05W, Sec. 23°                              | ID17060108CL011a_03       | 25.91 mg/L for<br>10 consecutive days                         | January-May     |
| Flannigan Creek—T41N, R05W,<br>Sec. 23 to mouth <sup>c</sup>                   | ID17060108CL011b_02       | 25.91 mg/L for<br>10 consecutive days                         | January-May     |
| Flannigan Creek—T41N, R05W,<br>Sec. 23 to mouth <sup>c</sup>                   | ID17060108CL011b_03       | 25.91 mg/L for<br>10 consecutive days                         | January-May     |
| Rock Creek—confluence of WF and EF Rock Creek to mouth <sup>c</sup>            | ID17060108CL012_03        | 9.36 mg/L for<br>10 consecutive days                          | January-May     |
| West Fork Rock Creek—source to T41N, R04W, Sec. 30°                            | ID17060108CL013a_02       | 9.36 mg/L for<br>10 consecutive days                          | January-May     |
| West Fork Rock Creek—T41N,<br>R04W, Sec. 30 to mouth <sup>c</sup>              | ID17060108CL013b_03       | 9.36 mg/L for<br>10 consecutive days                          | January-May     |
| East Fork Rock Creek—source to T41N, R04W, Sec. 29°                            | ID17060108CL014a_02       | 9.36 mg/L for<br>10 consecutive days                          | January-May     |
| East Fork Rock Creek—T41N,<br>R04W, Sec. 29 to mouth <sup>c</sup>              | ID17060108CL014b_02       | 9.36 mg/L for<br>10 consecutive days                          | January-May     |
| Hatter Creek—source to T40N,<br>R04W, Sec. 3°                                  | ID17060108CL015a_02       | 25.81 mg/L for<br>10 consecutive days                         | January-May     |
| Hatter Creek—T40N, R04W,<br>Sec. 3 to mouth <sup>c</sup>                       | ID17060108CL015b_02       | 25.81 mg/L for<br>10 consecutive days                         | January-May     |
| Hatter Creek—T40N, R04W,<br>Sec. 3 to mouth <sup>c</sup>                       | ID17060108CL015b_03       | 25.81 mg/L for<br>10 consecutive days                         | January-May     |
| Gold Creek—T42N, R04W,<br>Sec. 28 to mouth <sup>c</sup>                        | ID17060108CL029_02        | 23.36 mg/L for<br>10 consecutive days                         | January-May     |
| Gold Creek—T42N, R04W,<br>Sec. 28 to mouth <sup>c</sup>                        | ID17060108CL029_03        | 23.36 mg/L for<br>10 consecutive days                         | January-May     |
| Gold Creek—source to T42N,<br>R04W, Sec. 28°                                   | ID17060108CL030_02        | 23.36 mg/L for<br>10 consecutive days                         | January-May     |
| Crane Creek—source to T42N,<br>R04W, Sec. 28°                                  | ID17060108CL031a_02       | 23.36 mg/L for<br>10 consecutive days                         | January-May     |

| Assessment Unit Name                                   | Assessment Unit<br>Number | TSS Numeric Target                    | Critical Period |
|--------------------------------------------------------|---------------------------|---------------------------------------|-----------------|
| Crane Creek—T42N, R04W, Sec. 28 to mouth <sup>c</sup>  | ID17060108CL031b_02       | 23.36 mg/L for<br>10 consecutive days | January-May     |
| Deep Creek—source to T42,<br>R05, Sec. 02 <sup>c</sup> | ID17060108CL032a_02       | 23.36 mg/L for<br>10 consecutive days | January-May     |
| Deep Creek—source to T42,<br>R05, Sec. 02 <sup>c</sup> | ID17060108CL032a_03       | 23.36 mg/L for<br>10 consecutive days | January-May     |
| Deep Creek—T42, R05, Sec. 02 to mouth                  | ID17060108CL032b_02       | 23.36 mg/L for<br>10 consecutive days | January-May     |
| Deep Creek—T42, R05, Sec. 02 to mouth <sup>c</sup>     | ID17060108CL032b_03       | 23.36 mg/L for<br>10 consecutive days | January-May     |

<sup>&</sup>lt;sup>a</sup> South Fork Palouse River Watershed Assessment and TMDLs (DEQ 2007)

*Note*: milligrams per liter (mg/L)

The Palouse River Subbasin 5-Year Review has a list of seven tables that detail the TSS concentrations at each monitoring site established in the Palouse River subbasin TMDLs. Table 8-12 show the load reduction needs found during the 5-year review process (IDEQ, 2015a). Monitoring points without load reduction needs can be found in the Palouse River Subbasin 5-year Review.

Table 8. Daily TSS load for Lower Gold Creek (ID17060108CL029\_03) (monitoring point PR9) (IDEQ, 2015a).

| D_Q, _0.0aj. |               |               |                           |                           |                       |
|--------------|---------------|---------------|---------------------------|---------------------------|-----------------------|
| Sample Date  | Flow<br>(cfs) | TSS<br>(mg/L) | Existing<br>Load (lb/day) | Load Capacity<br>(lb/day) | Load<br>Reduction (%) |
| 5/8/2014     | 10.42         | 8.17          | 458.86                    | 1,311.99                  | 0                     |
| 5/14/2014    | 6.172         | 5.95          | 197.94                    | 777.12                    | 0                     |
| 5/20/2014    | 4.233         | 7.79          | 177.74                    | 532.98                    | 0                     |
| 5/28/2014    | 2.874         | 4.97          | 76.99                     | 361.87                    | 0                     |
| 6/4/2014     | 1.795         | 4.67          | 45.18                     | 226.01                    | 0                     |
| 6/10/2014    | 0.847         | 4.57          | 20.86                     | 106.65                    | 0                     |
| 2/19/2015    | 9.058         | 7.92          | 386.68                    | 1,140.50                  | 0                     |
| 3/2/2015     | 7.29          | 12.9          | 506.88                    | 917.89                    | 0                     |
| 3/16/2015    | 31.57         | 59.7          | 10,158.69                 | 3,974.99                  | 61                    |

Notes: total suspended solids (TSS); cubic feet per second (cfs); milligrams per liter (mg/L); pounds per day (lb/day)

Table 9. Daily TSS load for Lower Hatter Creek (ID17060108CL015b\_03) (monitoring point PR12) (IDEQ, 2015a).

| (,,,.       |               |               |                           |                           |                       |
|-------------|---------------|---------------|---------------------------|---------------------------|-----------------------|
| Sample Date | Flow<br>(cfs) | TSS<br>(mg/L) | Existing Load<br>(lb/day) | Load Capacity<br>(lb/day) | Load<br>Reduction (%) |
| 5/8/2014    | 18.22         | 8.36          | 821.0                     | 2,534.7                   | 0                     |
| 5/14/2014   | 10.61         | 8.57          | 490.1                     | 1,476.0                   | 0                     |
| 5/20/2014   | 8.107         | 7.78          | 340.0                     | 1,127.8                   | 0                     |

<sup>&</sup>lt;sup>b</sup> Paradise Creek TMDL: Water Body Assessment and Total Maximum Daily Load (DEQ 1997)

<sup>&</sup>lt;sup>c</sup> Palouse River Tributaries Subbasin Assessment and TMDL (DEQ 2005a)

| 5/28/2014 | 5.541 | 4.06 | 121.3   | 770.8   | 0  |
|-----------|-------|------|---------|---------|----|
| 6/4/2014  | 3.471 | 3.78 | 70.7    | 482.9   | 0  |
| 6/10/2014 | 2.036 | 2.28 | 25.0    | 283.2   | 0  |
| 2/19/2015 | 22.61 | 22.9 | 2,790.8 | 3,145.4 | 0  |
| 3/2/2015  | 17    | 14.8 | 1,356.1 | 2,365.0 | 0  |
| 3/16/2015 | 26.72 | 52.4 | 7,546.7 | 3,717.2 | 51 |

Notes: total suspended solids (TSS); cubic feet per second (cfs); milligrams per liter (mg/L); pounds per day (lb/day)

Table 10. Daily TSS load for Lower Rock Creek (ID17060108CL012\_03) (monitoring point PR14) (IDEQ, 2015a).

| Sample Date | Flow<br>(cfs) | TSS<br>(mg/L) | Existing<br>Load (lb/day) | Load Capacity<br>(lb/day) | Load<br>Reduction (%) |
|-------------|---------------|---------------|---------------------------|---------------------------|-----------------------|
| 5/8/2014    | 0.662         | 7.09          | 25.30                     | 33.40                     | 0                     |
| 5/14/2014   | 0.391         | 5.09          | 10.73                     | 19.73                     | 0                     |
| 5/20/2014   | 0.185         | 4.32          | 4.31                      | 9.33                      | 0                     |
| 5/28/2014   | 0.105         | 4.27          | 2.42                      | 5.30                      | 0                     |
| 6/4/2014    | 0.059         | 3.58          | 1.14                      | 2.98                      | 0                     |
| 6/10/2014   | 0.033         | 11.1          | 1.97                      | 1.66                      | 16                    |
| 2/19/2015   | 2.449         | 4.13          | 54.52                     | 123.55                    | 0                     |
| 3/2/2015    | 1.15          | 6.29          | 38.99                     | 58.02                     | 0                     |
| 3/16/2015   | 6.209         | 29            | 970.53                    | 313.25                    | 68                    |

Notes: total suspended solids (TSS); cubic feet per second (cfs); milligrams per liter (mg/L); pounds per day (lb/day)

Table 11. Daily TSS load for Upper Rock Creek (ID17060108CL013a\_02) (monitoring point PR15) (IDEQ, 2015a).

| Sample Date | Flow<br>(cfs) | TSS<br>(mg/L) | Existing<br>Load (lb/day) | Load Capacity<br>(lb/day) | Load<br>Reduction (%) |
|-------------|---------------|---------------|---------------------------|---------------------------|-----------------------|
| 5/8/2014    | 0.154         | 3.91          | 3.25                      | 7.77                      | 0                     |
| 5/14/2014   | 0.068         | 3.92          | 1.44                      | 3.43                      | 0                     |
| 5/20/2014   | 0.043         | 2.31          | 0.54                      | 2.17                      | 0                     |
| 5/28/2014   | 0.062         | 3.1           | 1.04                      | 3.13                      | 0                     |
| 6/4/2014    | 0.032         | 3.14          | 0.54                      | 1.61                      | 0                     |
| 6/10/2014   | 0.007         | 3.8           | 0.14                      | 0.35                      | 0                     |
| 2/19/2015   | 0.627         | 17.6          | 59.48                     | 31.63                     | 47                    |
| 3/2/2015    | 0.379         | 1.59          | 3.25                      | 19.12                     | 0                     |
| 3/16/2015   | 1.054         | 11.4          | 64.76                     | 53.17                     | 18                    |

*Notes*: total suspended solids (TSS); cubic feet per second (cfs); milligrams per liter (mg/L); pounds per day (lb/day)

Table 12. Daily TSS load for Lower Flannigan Creek (ID17060108CL011b\_03) (monitoring point PR16) (IDEQ, 2015a).

| Sample Date | Flow<br>(cfs) | TSS<br>(mg/L) | Existing<br>Load (lb/day) | Load Capacity<br>(lb/day) | Load<br>Reduction (%) |
|-------------|---------------|---------------|---------------------------|---------------------------|-----------------------|
| 5/8/2014    | 5.646         | 26.4          | 803.40                    | 788.49                    | 2                     |
| 5/14/2014   | 3.836         | 25            | 516.90                    | 535.72                    | 0                     |
| 5/20/2014   | 3.223         | 6.26          | 108.75                    | 450.11                    | 0                     |
| 5/28/2014   | 2.669         | 20            | 287.72                    | 372.74                    | 0                     |
| 6/4/2014    | 0.622         | 11.7          | 39.23                     | 86.87                     | 0                     |
| 6/10/2014   | 1.023         | 19.3          | 106.42                    | 142.87                    | 0                     |
| 2/19/2015   | 5.778         | 5.94          | 184.99                    | 806.93                    | 0                     |
| 3/2/2015    | 4.452         | 6.3           | 151.18                    | 621.74                    | 0                     |
| 3/16/2015   | 13.13         | 20.8          | 1,472.03                  | 1,833.67                  | 0                     |

Notes: total suspended solids (TSS); cubic feet per second (cfs); milligrams per liter (mg/L); pounds per day (lb/day)

#### **Bacteria**

The Palouse River Subbasin TMDL's utilize *E.coli* bacteria as per the Idaho water quality standards (IDAPA 58.01.02.251.01.a). Table 13 shows the assessment units with *E. coli* bacteria TMDL. Table 14 shows the reductions that are needed to meet the water quality standards for the South Fork of the Palouse River and the Palouse River Tributaries. Table 15 shows the reduction needs in Paradise Creek.

Table 13. Assessment units with *E. coli* bacteria TMDL's (IDEQ, 2015a).

| Assessment Unit Name                                                        | Assessment Unit<br>Number | <i>E. coli</i> Bacteria<br>Numeric Criteria<br>(cfu/100 mL) | Critical<br>Period |
|-----------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------|--------------------|
| South Fork Palouse River—Gnat Creek to Idaho/Washington border <sup>a</sup> | ID17060108CL002_03        | 126                                                         | Year-round         |
| South Fork Palouse River—source to Gnat Creek; tributaries <sup>a</sup>     | ID17060108CL003_02        | 126                                                         | Year-round         |
| South Fork Palouse River—source to Gnat Creek <sup>a</sup>                  | ID17060108CL003_03        | 126                                                         | Year-round         |
| Flannigan Creek—source to T41N, R05W, Sec. 23 <sup>b</sup>                  | ID17060108CL011a_02       | 126                                                         | Year-round         |
| Flannigan Creek— source to T41N, R05W, Sec. 23 <sup>b</sup>                 | ID17060108CL011a_03       | 126                                                         | Year-round         |
| Flannigan Creek—T41N, R05W, Sec. 23 to mouth <sup>b</sup>                   | ID17060108CL011b_02       | 126                                                         | Year-round         |
| Flannigan Creek—T41N, R05W, Sec. 23 to mouth <sup>b</sup>                   | ID17060108CL011b_03       | 126                                                         | Year-round         |
| Rock Creek— confluence of WF and EF Rock Creek to mouth <sup>b</sup>        | ID17060108CL012_03        | 126                                                         | Year-round         |
| West Fork Rock Creek—source to T41N, R04W, Sec. 30 <sup>b</sup>             | ID17060108CL013a_02       | 126                                                         | Year-round         |
| West Fork Rock Creek—T41N, R04W,                                            | ID17060108CL013b_03       | 126                                                         | Year-round         |

| Assessment Unit Name                                              | Assessment Unit<br>Number | E. coli Bacteria<br>Numeric Criteria<br>(cfu/100 mL) | Critical<br>Period |
|-------------------------------------------------------------------|---------------------------|------------------------------------------------------|--------------------|
| Sec. 30 to mouth <sup>b</sup>                                     |                           |                                                      |                    |
| East Fork Rock Creek—source to T41N, R04W, Sec. 29 <sup>b</sup>   | ID17060108CL014a_02       | 126                                                  | Year-round         |
| East Fork Rock Creek—T41N, R04W,<br>Sec. 29 to mouth <sup>b</sup> | ID17060108CL014b_02       | 126                                                  | Year-round         |
| Hatter Creek— source to T40N, R04W,<br>Sec. 3 <sup>b</sup>        | ID17060108CL015a_02       | 126                                                  | Year-round         |
| Hatter Creek—T40N, R04W, Sec. 3 to mouth <sup>b</sup>             | ID17060108CL015b_02       | 126                                                  | Year-round         |
| Hatter Creek—T40N, R04W, Sec. 3 to mouth <sup>b</sup>             | ID17060108CL015b_03       | 126                                                  | Year-round         |
| Gold Creek—T42N, R04W, Sec. 28 to mouth <sup>b</sup>              | ID17060108CL029_02        | 126                                                  | Year-round         |
| Gold Creek—T42N, R04W, Sec. 28 to mouth <sup>b</sup>              | ID17060108CL029_03        | 126                                                  | Year-round         |
| Gold Creek—source to T42N, R04W,<br>Sec. 28 <sup>b</sup>          | ID17060108CL030_02        | 126                                                  | Year-round         |
| Crane Creek—source to T42N, R04W, Sec. 28 <sup>b</sup>            | ID17060108CL031a_02       | 126                                                  | Year-round         |
| Crane Creek—T42N, R04W, Sec. 28 to mouth <sup>b</sup>             | ID17060108CL031b_02       | 126                                                  | Year-round         |
| Deep Creek—source to T42, R05, Sec. 02 <sup>b</sup>               | ID17060108CL032a_02       | 126                                                  | Year-round         |
| Deep Creek—source to T42, R05, Sec. 02b                           | ID17060108CL032a_03       | 126                                                  | Year-round         |
| Deep Creek—T42, R05, Sec. 02 to mouth <sup>b</sup>                | ID17060108CL032b_02       | 126                                                  | Year-round         |
| Deep Creek—T42, R05, Sec. 02 to mouth <sup>b</sup>                | ID17060108CL032b_03       | 126                                                  | Year-round         |

a South Fork Palouse River Watershed Assessment and TMDLs (DEQ 2007) Palouse River Tributaries Subbasin Assessment and TMDL (DEQ 2005a) Note: colony forming units/100 milligrams (cfu/100 mL)

Table 14. *E. coli* bacteria reductions needed for the South Fork of Palouse and Palouse Tributaries (IDEQ, 2015a).

| Stream Name and<br>Monitoring Point | Assessment Unit<br>Number | Existing<br>Load<br>(cfu/100 mL) | Load<br>Capacity<br>(cfu/100 mL) | Load<br>Allocation<br>(cfu/100 mL) | Load<br>Reduction<br>(%) |
|-------------------------------------|---------------------------|----------------------------------|----------------------------------|------------------------------------|--------------------------|
| South Fork Palouse<br>River—SF4     | ID17060108CL002_03        | 102                              | 126                              | 126                                | 0                        |
| South Fork Palouse<br>River—SF2     | ID17060108CL003_03        | 72                               | 126                              | 126                                | 0                        |
| Flannigan Creek—PR17                | ID17060108CL011a_0<br>2   | 1,940                            | 126                              | 126                                | 93.5                     |
| Flannigan Creek—PR16                | ID17060108CL011b_0<br>3   | 2,239                            | 126                              | 126                                | 94.4                     |
| Rock Creek—PR14                     | ID17060108CL012_03        | 239                              | 126                              | 126                                | 47                       |
| Rock Creek—PR15                     | ID17060108CL013a_0<br>2   | 141                              | 126                              | 126                                | 11                       |
| Hatter Creek—PR13                   | ID17060108CL015a_0<br>2   | 190                              | 126                              | 126                                | 34                       |
| Hatter Creek—PR12                   | ID17060108CL015b_0<br>3   | 764                              | 126                              | 126                                | 84                       |
| Gold Creek—PR9                      | ID17060108CL029_03        | 234                              | 126                              | 126                                | 46                       |
| Gold Creek—PR8                      | ID17060108CL030_02        | 223                              | 126                              | 126                                | 43                       |
| Deep Creek—PR6                      | ID17060108CL032a_0<br>2   | 31                               | 126                              | 126                                | 0                        |
| Deep Creek                          | ID17060108CL032b_0<br>3   | 48                               | 126                              | 126                                | 0                        |

Note: colony forming units per 100 milliliters (cfu/100 mL)

Table 15. *E. coli* bacteria concentrations and necessary load reductions in Paradise Creek (IDEQ, 2015c).

| Date                  | Existing Load <sup>a</sup><br>(cfu/100 mL) <sup>b</sup> | Daily Load<br>Allocation <sup>a</sup><br>(cfu/100 mL) <sup>b</sup> | Load Reduction<br>(cfu/100 mL) <sup>b</sup> | Necessary Load<br>Reduction (%) |
|-----------------------|---------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|---------------------------------|
| May 2013              | 688.1                                                   | 126                                                                | 562.1                                       | 82                              |
| June 2013             | 1192.0                                                  | 126                                                                | 1066.0                                      | 89                              |
| August/September 2013 | 485.7                                                   | 126                                                                | 359.7                                       | 74                              |
| October 2013          | 437.0                                                   | 126                                                                | 311.0                                       | 71                              |
| November 2013         | 209.3                                                   | 126                                                                | 83.3                                        | 40                              |
| December 2013         | 785.1                                                   | 126                                                                | 659.1                                       | 84                              |
| January 2014          | 200.2                                                   | 126                                                                | 74.2                                        | 37                              |
| February 2014         | 167.9                                                   | 126                                                                | 41.9                                        | 25                              |
| March 2014            | 149.6                                                   | 126                                                                | 23.6                                        | 16                              |
| April 2014            | 185.1                                                   | 126                                                                | 59.1                                        | 32                              |

#### **Nutrients**

According to Idaho water quality standards (IDAPA 58.01.02.200.06), the nutrient standard is a narrative standard. Aquatic life beneficial uses can be impaired when excessive algae decompose, depleting dissolved oxygen in the water column. Monitoring data indicates that phosphorus is the limiting nutrient for aquatic plant growth in the subbasin. Therefore, phosphorus (TP) was used as a surrogate target for nutrients in the Palouse River subbasin (IDEQ, 2015a). Table 16 shows the assessment units with a nutrient TMDL. Average total phosphorus non-point source load allocations are shown in Table 17.

Table 16. Assessment units with nutrient TMDL's (IDEQ, 2015a).

| Assessment Unit Name                                                        | Assessment Unit<br>Number | Total Phosphorus<br>Numeric Target<br>(mg/L) | Critical Period |
|-----------------------------------------------------------------------------|---------------------------|----------------------------------------------|-----------------|
| Cow Creek—source to Idaho/Washington border <sup>a</sup>                    | ID17060108CL001_02        | 0.1                                          | June-September  |
| Cow Creek—source to Idaho/Washington border <sup>a</sup>                    | ID17060108CL001_03        | 0.1                                          | June-September  |
| South Fork Palouse River—Gnat Creek to Idaho/Washington border <sup>d</sup> | ID17060108CL002_03        | 0.1                                          | May-October     |
| South Fork Palouse River—source to Gnat Creek; tributaries <sup>d</sup>     | ID17060108CL003_02        | 0.1                                          | May-October     |
| South Fork Palouse River—source to Gnat Creek <sup>d</sup>                  | ID17060108CL003_03        | 0.1                                          | May-October     |
| Paradise Creek—urban boundary to Idaho/Washington border <sup>b</sup>       | ID17060108CL005_02        | 0.136                                        | May-October     |
| Paradise Creek—forest habitat boundary to urban boundary <sup>b</sup>       | ID17060108CL005_02a       | 0.136                                        | May-October     |
| Idlers Rest Creek—source to forest habitat boundary <sup>b</sup>            | ID17060108CL005_02b       | 0.136                                        | May-October     |
| Flannigan Creek—source to T41N, R05W, Sec. 23 <sup>c</sup>                  | ID17060108CL011a_02       | 0.1                                          | May-October     |
| Flannigan Creek—source to T41N, R05W, Sec. 23 <sup>c</sup>                  | ID17060108CL011a_03       | 0.1                                          | May-October     |
| Flannigan Creek—T41N, R05W, Sec. 23 to mouth <sup>c</sup>                   | ID17060108CL011b_02       | 0.1                                          | May-October     |
| Flannigan Creek—T41N, R05W, Sec. 23 to mouth <sup>c</sup>                   | ID17060108CL011b_03       | 0.1                                          | May-October     |
| Hatter Creek—T40N, R04W, Sec. 3 to mouth <sup>c</sup>                       | ID17060108CL015b_02       | 0.1                                          | May-October     |
| Hatter Creek—T40N, R04W, Sec. 3 to mouth <sup>c</sup>                       | ID17060108CL015b_03       | 0.1                                          | May-October     |

<sup>&</sup>lt;sup>a</sup> Cow Creek Subbasin Assessment and Nutrient Total Maximum Daily Load (DEQ 2005b)

<sup>&</sup>lt;sup>b</sup> Paradise Creek TMDL Water Body Assessment and Total Maximum Daily Load (DEQ 1997)

<sup>&</sup>lt;sup>c</sup> Palouse River Tributaries Subbasin Assessment and TMDL (DEQ 2005a)

<sup>&</sup>lt;sup>d</sup> South Fork Palouse River Watershed Assessment and TMDLs (DEQ 2007) Note: milligrams per liter (mg/L)

Table 17. Average total phosphorus nonpoint source load allocations (IDEQ, 2015a).

| Stream Name<br>and<br>Monitoring<br>Point | Assessment Unit<br>Number | Average<br>Daily<br>Flow | Total<br>Load<br>Capacity<br>(kg/day) | 10%<br>Margin<br>of Safety<br>(kg/day) | Available<br>Load<br>Capacity<br>(kg/day) | Existing<br>Load<br>(kg/day) | Load<br>Reduction<br>(%) |
|-------------------------------------------|---------------------------|--------------------------|---------------------------------------|----------------------------------------|-------------------------------------------|------------------------------|--------------------------|
| Cow Creek                                 | ID17060108CL001_02        | 0.64                     | 0.16                                  | 0.02                                   | 0.14                                      | 0.09                         | 0                        |
| Cow Creek                                 | ID17060108CL001_03        | 4.52                     | 1.11                                  | 0.11                                   | 1                                         | 1.05                         | 5                        |
| South Fork<br>Palouse<br>River—SF4        | ID17060108CL002_03        | 3.34                     | 0.82                                  | 0.08                                   | 0.74                                      | 0.87                         | 15                       |
| South Fork<br>Palouse<br>River—SF1        | ID17060108CL003_02        | 0.4                      | 0.1                                   | 0.01                                   | 0.09                                      | 0.14                         | 36                       |
| South Fork<br>Palouse<br>River—SF2        | ID17060108CL003_03        | 2.1                      | 0.51                                  | 0.05                                   | 0.46                                      | 0.48                         | 4                        |
| Paradise<br>Creek                         | ID17060108CL005_02        | 1.2                      | 0.29                                  | 0.03                                   | 0.26                                      | 0.43                         | 40                       |
| Flannigan<br>Creek—PR17                   | ID17060108CL011a_02       | 3.72                     | 0.91                                  | 0.09                                   | 0.82                                      | 0.76                         | 0                        |
| Flannigan<br>Creek—PR16                   | ID17060108CL011b_03       | 2.84                     | 0.69                                  | 0.07                                   | 0.63                                      | 0.76                         | 17                       |
| Hatter Creek—<br>PR12                     | ID17060108CL015b_03       | 8                        | 1.96                                  | 0.2                                    | 1.76                                      | 1.18                         | 0                        |

Notes: kilograms per day (kg/day)

## **Temperature**

Temperature was not included in the original TMDL documents for the Palouse River subbasin. There have been addendum Temperature TMDL's written in 2015 for each of the subbasins within the Palouse River that had temperature listings using the Potential Natural Vegetation (PNV) protocol. The PNV protocol uses shade as a surrogate target for temperature. The Cow Creek Temperature Addendum Implementation Plan was developed July 2014 (ISWC, 2014) in response to the Cow Creek Temperature Total Maximum Daily Load Addendum (IDEQ, 2013). Table 18 summarizes the average lack of shade for the Lower Cow Creek AU.

Table 18. Average lack of shade for Lower Cow Creek AU (ISWC, 2014).

| Lower Cow Creek (ID1706108CL001_03)          | Lack of Shade (%) |
|----------------------------------------------|-------------------|
| Above Genesee (along Genesee-Juliaetta Road) | 11 to 31          |
| Section in Genesee                           | 9                 |
| Union flats to Genesee                       | 0 to 15           |
| Below Union Flats                            | 2 to 22           |

The Palouse Subbasin TMDL Temperature details the tributaries with temperature listed as a pollutant. The PNV approach was utilized using shade as a surrogate target for temperature. Table 19 summarizes the solar loads and the average lack of shade for each tributary (IDEQ, 2015b).

Table 19. Total solar loads and average lack of shade for Paradise Creek, Palouse River Tributaries and South Fork Palouse River (IDEQ, 2016).

|                                                 | Total Existing | Total Target | Excess Load     | Average   |
|-------------------------------------------------|----------------|--------------|-----------------|-----------|
| Water Body/<br>Assessment Unit                  | Load           | Load         | (Reduction)     | Lack of   |
|                                                 |                | (kWh/day)    |                 | Shade (%) |
| Paradise Creek<br>ID17060108CL005_02a           | 85,000         | 41,000       | 43,000<br>(51%) | -25       |
| Paradise Creek<br>ID17060108CL005_02            | 120,000        | 98,000       | 21,000<br>(18%) | -14       |
| Paradise Creek<br>ID17060108CL005_02b           | 4,600          | 1,500        | 3,200<br>(70%)  | -22       |
| Palouse River Tributaries                       |                |              |                 |           |
| Deep Creek Tributaries ID17060108CL032a_02      | 190,000        | 100,000      | 92,000<br>(48%) | -29       |
| Deep Creek<br>ID17060108CL032b_03               | 380,000        | 300,000      | 83,000<br>(22%) | -16       |
| Gold Creek<br>ID17060108CL030_02                | 120,000        | 36,000       | 80,000<br>(67%) | -21       |
| Deep Creek Tributaries ID17060108CL032b_02      | 68,000         | 13,000       | 56,000<br>(82%) | -61       |
| Flannigan Creek<br>ID17060108CL011a_02          | 61,000         | 15,000       | 49,000<br>(80%) | -23       |
| Big Creek<br>ID17060108CL027b_02                | 200,000        | 150,000      | 44,000<br>(22%) | -16       |
| Hatter Creek<br>ID17060108CL015b_02             | 83,000         | 40,000       | 43,000<br>(52%) | -22       |
| Hatter Creek<br>ID17060108CL015a_02             | 48,000         | 14,000       | 34,000<br>(71%) | -24       |
| Flannigan Creek<br>ID17060108CL011b_03          | 190,000        | 160,000      | 33,000<br>(17%) | -23       |
| Flannigan Creek Tributaries ID17060108CL011b_02 | 33,000         | 4,100        | 32,000<br>(97%) | -69       |
| Crane Creek<br>ID17060108CL031b_02              | 91,000         | 62,000       | 29,000<br>(32%) | -28       |
| Flannigan Creek<br>ID17060108CL011a_03          | 71,000         | 46,000       | 25,000<br>(35%) | -22       |
| Gold Creek<br>ID17060108CL029_03                | 79,000         | 56,000       | 23,000<br>(29%) | -21       |
| Crane Creek<br>ID17060108CL031a_02              | 18,000         | 6,300        | 13,000<br>(72%) | -31       |
| Deep Creek<br>ID17060108CL032a_03               | 30,000         | 20,000       | 10,000<br>(33%) | -32       |
| Big Creek<br>ID17060108CL027a_02                | 14,000         | 7,000        | 6,700<br>(48%)  | -15       |

| Hatter Creek<br>ID17060108CL015b_03         | 220,000 | 260,000 | 0<br>(0%)       | -8  |
|---------------------------------------------|---------|---------|-----------------|-----|
| South Fork Palouse River ID17060108CL002_03 | 180,000 | 140,000 | 39,000<br>(22%) | -11 |
| South Fork Palouse River ID17060108CL003_02 | 38,000  | 18,000  | 20,000<br>(53%) | -14 |
| South Fork Palouse River ID17060108CL003_03 | 15,000  | 10,000  | 4,700<br>(31%)  | -12 |

Note: Load data are rounded to two significant figures, which may present rounding errors.

## **Agricultural Inventory and Evaluation**

As projects are implemented the existing shade levels should be documented before implementation of practices to verify the PNV aerial photo interpretation of the site. These before values should be compared to shade levels after implementation to determine actual shade increases of each project. This process will help evaluate the approach that was used in developing the temperature TMDL.

#### **Treatment**

Agricultural lands that contribute excessive pollutants to waterbodies were defined as critical areas for BMP implementation. Critical areas are prioritized based on proximity to the waterbody; potential for transport and delivery of pollutant to the waterbody; and water quality impact. Critical areas are those areas where treatment is considered necessary to address the resource concerns affecting water quality.

Table 20: Potential BMP Practices by watershed

#### South Fork Palouse Recommended BMP's

| Practice                              | Amount | Units |
|---------------------------------------|--------|-------|
| Dry Land Crop                         | 12,900 | ac    |
| Residue Management, No-Till (329)     | 3,250  | ac    |
| Nutrient Management (590)             | 3,250  | ac    |
| Water & Sediment Control Basins (638) | 60     | no    |
| Filter Strips (393)                   | 242    | ac    |
| Riparian Forest Buffer (391)          | 80     | ac    |
| Riparian Herbaceous Cover (390)       | 80     | ac    |
| Tree/Shrub Establishment (612)        | 80     | ac    |
|                                       |        |       |
| Grass/ Pasture/ CRP Lands             | 3,900  | ac    |
| Channel Bank Vegetation (322)         | 25     | ac    |

| Channel Stabilization (584)     | 5,400  | ft |
|---------------------------------|--------|----|
| Diversion                       | 1,200  | ft |
| Fence                           | 52,000 | ft |
| Riparian Forest Buffer (391)    | 75     | ac |
| Riparian Herbaceous Cover (390) | 75     | ac |
| Tree/Shrub Establsihment (612)  | 75     | ac |
| Watering Facility (614)         | 8      | no |
| Well (642)                      | 4      | no |

# Paradise Creek Recommended BMP's

| Practice                              | Amount | Units |
|---------------------------------------|--------|-------|
| Agriculture (cropland/grazing)        |        |       |
| Nutrient Management (590)             | 500    | ac    |
| Filter Strips (393)                   | 335    | ac    |
| Riparian Forest Buffer (391)          | 734    | ac    |
| Water & Sediment Control Basins (638) | 52     | no    |
| Sediment Basins (350)                 | 21     | no    |
| Field Borders                         |        | ft    |
| Residue Management, No-Till (329)     | 500    | ac    |
| Channel Stabilization (322)           |        | ft    |
| Forest                                |        |       |
| Road rocking                          |        | ft    |
| Grass seeding                         |        | ac    |
| Reforestation                         |        | ac    |
| Urban-Riparian                        |        |       |
| Streambank stabilization              |        | ft    |
| Rural - Riparian                      |        |       |
| Riparian restoration                  |        | ac    |
| Wetland restoration                   |        | ac    |

# Cow Creek Recommended BMP's

| Practice                      | Amount | Units |
|-------------------------------|--------|-------|
| Riparian                      |        |       |
| Grassed Filter Strips (412)   | 1240   | ac    |
| Woody Vegetation Buffer (391) | 200    | ac    |
|                               |        |       |

| Dry Land Crop                           |        |    |
|-----------------------------------------|--------|----|
| Residue Management, No-Till (329)       | 15,000 | ac |
| Nutrient Management (590)               | 30,000 | ac |
| Water and Sediment Control Basins (638) | 50     | no |
| Grade Stabilization Structures (410)    | 10     | no |
|                                         |        |    |
| Pasture                                 |        |    |
| Fence (382)                             | 8,000  | ft |
| Watering Facility (614)                 | 3      | no |
| Well (642)                              | 1      | no |
| Pumping Plant (riparian) (533)          | 1      | no |
| Waste Storage Facility (winter feed)    |        |    |
| (313)                                   | 1      | no |

# Big Creek Recommended BMP's

| Practice                        | Amount | Units |
|---------------------------------|--------|-------|
| Grass/ Pasture / Haylands       | 13     | ac    |
| Fence (382)                     | 18,000 | ft    |
| Riparian Forest Buffer (391)    | 13     | ac    |
| Riparian Herbaceous Cover (390) | 13     | ac    |
| Tree/Shrub Establishment (612)  | 13     | ac    |
| Use Exclusion (472)             | 13     | ac    |

# Rock Creek Recommended BMP's

| Practice                              | Amount | Units |
|---------------------------------------|--------|-------|
| Dry Land Crop                         | 507    | ac    |
| Residue Management, No-Till (329)     | 250    | ac    |
| Residue Management, Mulch Till (345)  | 250    | ac    |
| Nutrient Management (590)             | 500    | ac    |
| Water & Sediment Control Basins (638) | 4      | no    |
| Filter Strips (393)                   | 2      | ac    |
|                                       |        |       |
| Pasture / Haylands                    | 1,672  | ac    |
| Channel Bank Vegetation (322)         | 4      | ac    |
| Channel Stabilization (584)           | 1,400  | ft    |
| Diversion (362)                       | 1,350  | ft    |
| Fence (382)                           | 14,000 | ft    |
| Riparian Herbaceous Cover (390)       | 11     | ac    |

| Watering Facility (614) | 9 | no |
|-------------------------|---|----|
| Well (642)              | 9 | no |

# Hatter Creek Recommended BMP's

| Practice                              | Amount | Units |
|---------------------------------------|--------|-------|
| Dry Land Crop                         | 355    | ac    |
| Residue Management, No-Till (329)     | 175    | ac    |
| Residue Management, Mulch Till (345)  | 180    | ac    |
| Nutrient Management (590)             | 300    | ac    |
| Water & Sediment Control Basins (638) | 3      | no    |
| Filter Strips (393)                   | 1      | ac    |
| Riparian Forest Buffer (391)          | 2      | ac    |
| Riparian Herbaceous Cover (390)       | 2      | ac    |
| Tree/Shrub Establishment (612)        | 2      | ac    |
|                                       |        |       |
| Pasture/Haylands                      | 1,971  | ac    |
| Channel Bank Vegetation (322)         | 12     | ac    |
| Channel Stabilization (584)           | 2,600  | ft    |
| Diversion                             | 1,500  | ft    |
| Fence                                 | 50,000 | ft    |
| Riparian Forest Buffer (391)          | 25     | ac    |
| Riparian Herbaceous Cover (390)       | 38     | ac    |
| Tree/Shrub Establishment (612)        | 19     | ac    |
| Watering Facility (614)               | 20     | no    |
| Well (642)                            | 10     | no    |

# Flannigan Creek Recommended BMP's

| Practice                              | Amount | Units |
|---------------------------------------|--------|-------|
| Dry Land Crop                         | 1,558  | ac    |
| Residue Management, No-Till (329)     | 400    | ac    |
| Residue Management, Mulch Till (345)  | 400    | ac    |
| Nutrient Management (590)             | 800    | ac    |
| Water & Sediment Control Basins (638) | 10     | no    |
| Filter Strips (393)                   | 5      | ac    |
| Riparian Forest Buffer (391)          | 10     | ac    |
| Riparian Herbaceous Cover (390)       | 10     | ac    |
| Tree/Shrub Establishment (612)        | 10     | ac    |
|                                       |        |       |
| Pasture/Haylands                      | 834    | ac    |

| Channel Bank Vegetation (322)   | 5      | ac |
|---------------------------------|--------|----|
| Channel Stabilization (584)     | 1,800  | ft |
| Diversion                       | 900    | ft |
| Fence                           | 36,000 | ft |
| Riparian Forest Buffer (391)    | 15     | ac |
| Riparian Herbaceous Cover (390) | 15     | ac |
| Tree/Shrub Establishment (612)  | 15     | ac |
| Watering Facility (614)         | 12     | no |
| Well (642)                      | 6      | no |

Deep Creek Recommended BMP's

| Practice Practice                     | Amount | Units |
|---------------------------------------|--------|-------|
| Dry Land Crop                         | 4,339  | ac    |
| Residue Management, No-Till (329)     | 1,000  | ac    |
| Residue Management, Mulch Till (345)  | 1,000  | ac    |
| Nutrient Management (590)             | 2,000  | ac    |
| Water & Sediment Control Basins (638) | 27     | no    |
| Filter Strips (393)                   | 25     | ac    |
| Riparian Forest Buffer (391)          | 25     | ac    |
| Riparian Herbaceous Cover (390)       | 25     | ac    |
| Tree/Shrub Establishment (612)        | 25     | ac    |
|                                       |        |       |
| Grass/ Pasture/ Haylands              | 6,633  | ac    |
| Channel Bank Vegetation (322)         | 20     | ac    |
| Channel Stabilization (584)           | 4,000  | ft    |
| Diversion                             | 4,800  | ft    |
| Fence                                 | 80,000 | ft    |
| Riparian Forest Buffer (391)          | 53     | ac    |
| Riparian Herbaceous Cover (390)       | 53     | ac    |
| Tree/Shrub Establishment (612)        | 53     | ac    |
| Watering Facility (614)               | 32     | no    |
| Well (642)                            | 16     | no    |

# Gold Creek Recommended BMP's

| Practice                             | Amount | Units |
|--------------------------------------|--------|-------|
| Dry Land Crop                        | 3,570  | ac    |
| Residue Management, No-Till (329)    | 900    | ac    |
| Residue Management, Mulch Till (345) | 900    | ac    |
| Nutrient Management (590)            | 1,800  | ac    |

| Water & Sediment Control Basins (638) | 22    | no |
|---------------------------------------|-------|----|
| Filter Strips (393)                   | 32    | ac |
| Riparian Forest Buffer (391)          | 32    | ac |
| Riparian Herbaceous Cover (390)       | 32    | ac |
| Tree/Shrub Establishment (612)        | 32    | ac |
|                                       |       |    |
| Grass/ Pasture/Haylands               | 650   | ac |
| Channel Bank Vegetation (322)         | 1     | ac |
| Channel Stabilization (584)           | 400   | ft |
| Diversion                             | 300   | ft |
| Fence                                 | 1,000 | ft |
| Riparian Forest Buffer (391)          | 7     | ac |
| Riparian Herbaceous Cover (390)       | 7     | ac |
| Tree/Shrub Establishment (612)        | 53    | ac |
| Watering Facility (614)               | 2     | no |
| Well (642)                            | 2     | no |

## **Funding**

Financial and technical assistance for installation of BMPs may be needed to ensure success of this implementation plan. The Latah Soil and Water Conservation District can assist interested landowners in actively pursuing potential funding sources to implement water quality improvements on private agricultural and grazing lands. The SWC and NRCS can provide technical assistance when needed. Many of these programs can be used in combination with each other to implement BMPs. These sources include (but are not limited to):

**CWA 319** –These are Environmental Protection Agency funds allocated to Tribal entities and the State of Idaho. The Idaho Department of Environmental Quality (DEQ) administers the Clean Water Act §319 Non-point Source Management Program for areas outside the Tribal Reservations. Funds focus on projects to improve water quality and are usually related to the TMDL process.

http://www.deq.idaho.gov/water/prog\_issues/surface\_water/nonpoint.cfm#management

Resource Conservation and Rangeland Development Program (RCRDP) –The RCRDP is a loan program administered by the ISWCC for implementation of agricultural and rangeland best management practices or loans to purchase equipment to increase conservation. <a href="http://www.scc.state.id.us/programs.htm">http://www.scc.state.id.us/programs.htm</a>

Environmental Quality Incentives Program (EQIP): EQIP provides financial and technical assistance to agricultural producers in order to address natural resource

concerns and deliver environmental benefits such as improved water and air quality, conserved ground and surface water, reduced soil erosion and sedimentation or improved or created wildlife habitat. <a href="http://www.nrcs.usda.gov/programs/eqip/">http://www.nrcs.usda.gov/programs/eqip/</a>

**Regional Conservation Partnership Program (RCPP) -** RCPP promotes coordination between NRCS and its partners to deliver conservation assistance to producers and landowners. NRCS provides assistance to producers through partnership agreements and through program contracts or easement agreements.

http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/farmbill/rcpp/

The Agricultural Conservation Easement Program (ACEP) – ACEP provides financial and technical assistance to help conserve agricultural lands and wetlands and their related benefits.. Under the Agricultural Land Easements component, NRCS helps Indian tribes, state and local governments and non-governmental organizations protect working agricultural lands and limit non-agricultural uses of the land. Under the Wetlands Reserve Easements component, NRCS helps to restore, protect and enhance enrolled wetlands.

http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/easements/acep/

**Conservation Technical Assistance (CTA)** –The CTA provides free technical assistance to help farmers and ranchers identify and solve natural resource problems on their farms and ranches. This might come as advice and counsel, through the design and implementation of a practice or treatment, or as part of an active conservation plan. <a href="http://www.nrcs.usda.gov/programs/cta/">http://www.nrcs.usda.gov/programs/cta/</a>

National Grazing Lands Coalition (NatGLC) –The National Grazing Lands Coalition' promotes ecologically and economically sound management of grazing lands. Grants are available that facilitate the following: (1) demonstration of how improved soil health affects grazing lands sustainability (2) establishment of conservation partnerships, leadership and outreach, (3) education of grazing land managers, professionals, youth and the public (4) enhancement of technical capabilities, and (5) improvement in the understanding of the values and multiple services that grazing lands provide. http://www.glci.org/

**Conservation Reserve Program (CRP)** –The CRP is a land retirement program for blocks of land or strips of land that protect the soil and water resources, such as buffers and grassed waterways <a href="http://www.fsa.usda.gov/programs-and-services/conservation-programs/conservation-reserve-program/index">http://www.fsa.usda.gov/programs-and-services/conservation-programs/conservation-reserve-program/index</a>

**Conservation Innovation Grants (CIG)** –CIG is a voluntary program to stimulate the development and adoption of innovative conservation approaches and technologies for agricultural production.

http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/programs/financial/cig/

**State Revolving Loan Funds (SRF)** –These funds are administered through the IDEQ. <a href="https://www.deq.idaho.gov/water-quality/grants-loans/water-system-construction-loans.aspx">https://www.deq.idaho.gov/water-quality/grants-loans/water-system-construction-loans.aspx</a>

**Conservation Security Program (CSP)** –CSP is a voluntary program that rewards the Nation's premier farm and ranch land conservationists who meet the highest standards of conservation environmental management.

http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/programs/alphabetical/csp/

**HIP** – This is an Idaho Department of Fish and Game program to provide technical and financial assistance to private landowners and public land managers who want to enhance upland game bird and waterfowl habitat. Funds are available for cost sharing on habitat projects in partnership with private landowners, non-profit organizations, and state and federal agencies. <a href="http://fishandgame.idaho.gov/cms/wildlife/hip/default.cfm">http://fishandgame.idaho.gov/cms/wildlife/hip/default.cfm</a>

**Partners for Fish and Wildlife Program in Idaho –** This is a U.S. Fish and Wildlife program providing funds for the restoration of degraded riparian areas along streams, and shallow wetland restoration. <a href="http://www.fws.gov/partners/pdfs/ID-needs.pdf">http://www.fws.gov/partners/pdfs/ID-needs.pdf</a>

## Maintenance, Monitoring, Evaluation

DEQ will continue to monitor the watersheds as per Idaho Code 39-3611, at least on a 5-year interval using BURP protocol. Additional monitoring of BMP's and the maintenance of BMP's installed will be performed by the designated agency or the agency that funded the BMP installations. The Latah Soil and Water Conservation District follows the Natural Resource Conservation Service guidelines for BMP life expectancy and monitors BMP installations for the expected life of each practice to ensure proper maintenance of the practices. Typically, when a volunteer approaches the district for BMP assistance the district evaluates the current site-specific resource concerns. Individual conservation planning with willing landowners will determine the most appropriate BMPs to install on a case by case basis.

All BMP's will be maintained by the landowner for the life of the practice. BMP's will be monitored and evaluated upon completion of the project, during annual reviews, and throughout the life of the practice. Monitoring and evaluations will enable staff to ensure practices are maintained and to evaluate BMP effectiveness for future projects.

## References

- Barker, 1981. Soil Survey of Latah County Area, Idaho. U.S. Department of Agriculture, Soil Conservation Service. Washington, D.C. 168pp plus maps.
- Cow Creek WAG (Cow Creek Watershed Advisory Group). 2008. Cow Creek Watershed Total Maximum Daily Load Implementation Plan for Agriculture. Genesee, ID: Idaho Soil and Water Conservation Commission.
- DEQ (Idaho Department of Environmental Quality). 1997. Paradise Creek TMDL: Water Body Assessment and Total Maximum Daily Load. Lewiston, ID: DEQ.
- DEQ (Idaho Department of Environmental Quality). 2005a. *Palouse River Tributaries Subbasin Assessment and TMDL*. Lewiston, ID: DEQ.
- DEQ (Idaho Department of Environmental Quality). 2005b. Cow Creek Subbasin Assessment and Nutrient Total Maximum Daily Load. Lewiston, ID: DEQ.
- DEQ (Idaho Department of Environmental Quality). 2007. South Fork Palouse River Watershed Assessment and TMDLs. Lewiston, ID: DEQ.
- DEQ (Idaho Department of Environmental Quality). 2013. Cow Creek Temperature Total Maximum Daily Loads Addendum. Lewiston, ID: DEQ.
- DEQ (Idaho Department of Environmental Quality). 2015a." *Palouse River Subbasin Five-Year Review.*" Lewiston, ID: DEQ.
- DEQ (Idaho Department of Environmental Quality). 2015b. "Palouse River Tributaries Temperature TMDL." Lewiston, ID: DEQ.
- DEQ (Idaho Department of Environmental Quality). 2015c. Draft *Paradise Creek E. coli Bacteria TMDL Addendum*. Boise, ID: DEQ.
- DEQ (Idaho Department of Environmental Quality). 2015d. *Paradise Creek Temperature TMDL* 2015 Addendum to the Paradise Creek Subbasin Assessment and TMDL. Lewiston, ID: DEQ.
- DEQ (Idaho Department of Environmental Quality). 2016. DRAFT Palouse Subbasin TMDL Temperature Addendum. Lewiston, ID: DEQ.
- Idaho Code § 39.3611. Development and implementation of total maximum daily load or equivalent processes.
- ISWC (Idaho Soil and Water Conservation Comission). 2014. Cow Creek Implementation Plan Temperature Addendum for Agriculture. Boise, ID: SWC.

- Palouse River Tributaries WAG (Palouse River Tributaries Watershed Advisory Group). 2009. Palouse River Tributaries Total Maximum Daily Load Implementation Plan for Agriculture. Potlatch, ID: Idaho Soil and Water Conservation Commission.
- Paradise Creek WAG (Paradise Creek Watershed Advisory Group). 1999. Paradise Creek Total Maximum Daily Load Implementation Plan. Moscow, ID: Latah Soil and Water Conservation District.
- South Fork Palouse River WAG (South Fork Palouse River Watershed Advisory Group). 2009. South Fork of the Palouse River Total Maximum Daily Load Implementation Plan for Agriculture. Moscow, ID: Idaho Soil and Water Conservation Commission.
- Shumar, M.L. and J. De Varona. 2009. The Potential Natural Vegetation (PNV) Temperature Total Maximum Daily Load (TMDL) Procedures Manual. Boise, ID: DEQ.
- USDA, 1978. United States Department of Agriculture, Soil Conservation Service, Forest Service, and Economic, Statistics, and Cooperative Service. 1978. Palouse Cooperative River Basin Study.